Massive Paracetamol Overdose: An Observational Study.

Angela L Chiew (1,2), Geoffrey K Isbister (2,3), Colin Page (4,5), Nicholas A Buckley (2)

(1)Clinical Toxicology Unit/ Emergency Department, Prince of Wales Hospital.
(2)New South Wales Poisons Information Centre, The Children’s Hospital Westmead.
(3)Clinical Toxicology Research Group, University of Newcastle.
(4)Clinical Toxicology Unit, Princess Alexandra.
(5)Queensland Poisons Information Centre, Lady Cilento Children’s Hospital.
Aims/ Methods

• Describe clinical characteristics and outcomes of “massive” paracetamol overdose.

• **Methods:**
 - Australian Toxicology Monitoring (ATOM) Study – Australian Paracetamol Project (APP):
 - Prospective observational study
 - 5 toxicology units + 2 Poison Centres

• **Inclusion:**
 - Paracetamol ≥40g
 - Ingested over ≤8h
 - Immediate release preparation

• **Paracetamol Ratio [PR]**

 \[
 \text{1st paracetamol conc. (> 4h)} \quad \text{nomogram paracetamol conc. at same time}
 \]

\[
\text{Paracetamol Ratio} = \frac{5 \text{ hr concn}}{\text{nomogram concn at 5h}}
\]

\[
= \frac{200 \text{mg/L}}{125 \text{mg/L}} = 1.6
\]
Results

Initial Paracetamol Concentration (4-16h)

<table>
<thead>
<tr>
<th>Time post ingestion (h)</th>
<th>Nomogram Line</th>
<th>Double Nomogram Line</th>
<th>Triple Nomogram line</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paracetamol Concentration (mg/L)

- No Activated charcoal within 8h
- Activated charcoal within 8h

Results

- PR significantly lower with charcoal: **1.5** (IQR: 1.1 - 1.8) (n=37) vs **2.2** (IQR: 1.4 - 3.0) (n=97) \(p = 0.0002 \)
- Same median dose 50g

IV NAC < 8h of ingestion

<table>
<thead>
<tr>
<th></th>
<th>Charcoal N= 37</th>
<th>Nil N= 80</th>
<th>Odds Ratio p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Dose Ingested (IQR)</td>
<td>50g (48-63g)</td>
<td>50g (43-50g)</td>
<td></td>
</tr>
<tr>
<td>Median PR (range)</td>
<td>1.5 (0.4 – 9.17)</td>
<td>2.0 (0-6.21)</td>
<td>P = 0.002</td>
</tr>
<tr>
<td>Time to NAC (IQR:h)</td>
<td>5.3h (2.7-6.5h)</td>
<td>5.5h (3.8-6.8h)</td>
<td></td>
</tr>
<tr>
<td>Peak ALT>50IU/L</td>
<td>1 (3%)</td>
<td>12 (15%)</td>
<td>0.16 (0.02 - 1.3) p=0.10</td>
</tr>
<tr>
<td>Hepatotoxicity ALT>1000IU/L</td>
<td>0 (0%)</td>
<td>6 (7.5%)</td>
<td>0.15 (0.01- 2.79) p=0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions: Massive Overdose

• Early charcoal resulted in LOWER initial paracetamol concentrations
• Early charcoal less likely to have HEPATOTOXICITY
 • No patient given early charcoal developed hepatotoxicity
 • Not statistically significant due to small numbers
 • Likely due to lower paracetamol concentrations.
• Larger cohort required to demonstrate effect of charcoal on hepatotoxicity and acute liver injury.
Acknowledgments

- NSW and QLD Poison Information Centres
- Betty Chan
- Renai Kearney
- Jonathan Brett
- Kate Sellors
- Danielle Wood
- The many doctors who helped obtain patient consents