Effects of BQ-788, an ETB receptor antagonist, on amitriptyline-induced cardiovascular toxicity in rats

Arici A, Kalkan S, Buyukdeligoz M, Tuncok Y. Dokuz Eylul University, School of Medicine Department of Medical Pharmacology, Izmir, Turkey

Introduction

- Most common cause of TCA poisonings
- The second cause of the deadly poisonings by antidepressants
- Hypotension and QRS prolongation
 - Alfa-1 adrenergic receptor blockade,
 - Noradrenaline re-uptake inhibition,
 - Fast sodium channel blockade in the heart
- Other mechanisms of poisoning with TCAs
 - Nitric oxide secretion (NO)
 - Adenosine receptors

Hypotension and QRS prolongation

Material & Methods

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Measured parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amtriptyline, TCA</td>
<td>MAP= (SP+2DP)/3</td>
</tr>
<tr>
<td>BQ-788, ETB receptor antagonist</td>
<td>Heart rate (HR)</td>
</tr>
<tr>
<td>DMSO</td>
<td>QRS duration</td>
</tr>
</tbody>
</table>

Biorex MP150.0 DC, 35481556A, USA
Braun, Perfusor Compact S, Germany

| Table 1. The effects of BQ-788 bolus (10 nmol/w) on MAP, HRs and QRS duration (n=3) |
|----------------------------------|---------------------------------|
| POST 5 min | POST 10 min | POST 15 min | POST 20 min | POST 25 min | POST 30 min |
| 114.8±10.9 | 116.1±14.8 | 117.8±11.4 | 117.8±17.0 | 118.8±12.3 | 118.9±16.7 | 119.8±19.8 |
| HR (bpm) | 119.0±12.8 | 119.0±12.7 | 119.1±12.3 | 117.5±11.0 | 117.0±11.1 | 116.1±12.6 | 114.8±11.5 |
| MAP (mmHg) | 125.0±17.0 | 125.0±21.0 | 125.0±15.0 | 125.0±20.0 | 125.0±15.0 | 125.0±15.0 | 125.0±15.0 |

Table 1. The effects of BQ-788 bolus (10 nmol/w) on MAP, HRs and QRS duration (n=3)

Table 1. The effects of BQ-788 bolus (10 nmol/w) on MAP, HRs and QRS duration (n=3)

Preliminary study

AIM

to investigate the effects of BQ-788, an ETB receptor antagonist, on amitriptyline-induced

- Mean Arterial Pressure (MAP),
- Heart Rate (HRs),
- QRS prolongation

BQ-788 did not cause any significant change in baseline levels of MAP, HRs and QRS duration within thirty minutes.
Results

<table>
<thead>
<tr>
<th></th>
<th>Control (n=8)</th>
<th>BQ-788 (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% inhibition MAP</td>
<td>48.7±1.1%</td>
<td>58.3±1.8%</td>
</tr>
</tbody>
</table>

Figure 1: The effects of 5% dextrose or BQ-788 on amitriptyline induced (A) MAP, (B) QRS duration and (C) HRs. (*: BQ-788; ■: 5% dextrose). (*): p<0.05, (***): p<0.001 versus control.

Discussion 1

Hypotension

- BQ-788 improved the amitriptyline-induced hypotension
 - Increased ET-1 levels in circulation
 - Increased ET-1 levels might improve hypotension by enhancing Ca++ influx through the L-type calcium channels.
 - Increased endogenous catecholamine releasing activity by endothelin.
 - Inhibition of NO secretion from endothelium.

Discussion 2

Heart rate

- BQ-788 improved the amitriptyline-induced bradycardia
 - BQ-788 might have beneficial effect on HRs via sympathoexcitatory effect of endothelin
 - Sympathoexcitatory effects of endothelins in normotensive and hypertensive patients were demonstrated through ETA receptors

Discussion 3

QRS prolongation

- BQ-788 improved the amitriptyline-induced QRS prolongation
 - A tetrodotoxin-resistant (TTX-R) voltage-gated Na+ current in human cardiac tissue (hH1, Nav 1.5) was demonstrated to be enhanced by ET-1
 - BQ-788 might increase Na+ current in the heart.

Conclusion

- ETα receptor antagonists may have beneficial effects in cardiovascular toxicity induced by amitriptyline
 - ETα receptors might play a role in amitriptyline-induced cardiovascular toxicity.
 - BQ-788 might improve amitriptyline-induced decrease in MAP and HRs, and QRS prolongation by physiological antagonism.

Future studies

- The role of ETα receptors in amitriptyline-induced cardiovascular depression
- The role of NO secretion from endothelial cells and the contribution of ETα receptors in amitriptyline-induced vasodilatation in rat thoracic aorta.
Thanks
Prof. Dr. Yesim Tuncok
Assoc. Prof. Dr. Sule Kalkan
MsC Mugan Buyukdeligoz

This study was supported by the Dokuz Eylul University Research Foundation
(2010-KB-SAG.094)