Can Post-Mortem THC levels be Used to Estimate Ante-Mortem Impairment?

EAPCCT

London
May 30, 2012

Michael G. Holland, MD, FAACT, FACMT, FACOEM, FACEP
Clinical Associate Professor, SUNY Upstate Medical University
Consulting Medical Toxicologist
Upstate New York Poison Center, Syracuse, NY
Director of Occupational Medicine
Center for Occupational Health of Glens Falls Hospital
Glens Falls, NY
Marijuana and Impairment

- Cannabis is the most abused drug, after alcohol
- Cannabis use causes impairment of tasks necessary for safe driving
- At least 5% of total driver fatalities now due to THC alone
- Even higher percentage in under 40 yo drivers
- Especially when combined with alcohol
Marijuana and Impairment

- Psychomotor tests are surrogate measures of:
 - Attentiveness
 - Vigilance
 - Perception of time and speed
 - Use of acquired knowledge

- Adverse effects seen with acute THC intoxication:
 - Complex tasks requiring divided attention
 - Tracking
 - Motor coordination
 - Reaction time
 - Visual functions

- Numerous studies document multiplicative effects when combined with alcohol
Marijuana and Impairment

- Driver simulators & on road tests more accurately simulate real driving abilities
- More complex, real-life than psychomotor testing
- Deficits caused by low levels of THC may not be readily apparent in driving tests - test subjects drive slower than normal
- Deficits most pronounced in situations needing urgent evasive action
Metabolism

THC → 11-OH-THC → THC-COOH → Glucuronide
Marijuana and Impairment

- Psycho-active component is $\Delta-9$-THC
 - Active metabolite 11-hydroxy-$\Delta-9$-THC (THC-OH)
 - Inactive metabolite 11-nor- $\Delta-9$-THC-COOH (THC-COOH)

- Levels of THC-COOH only indicate use
 - No impairment from THCCOOH
 - Past studies of total cannabinoids uninterpretable
Marijuana and Impairment

- Measuring THC must be done carefully
- Older studies of culpable drivers had storage issues; often only THC-COOH found
- Blood storage issues
 - Loss of 50% at 8 wks storage if not deep freeze at -60°C
 - THC binds to plastic vials - must be stored in glass tubes
Cannabis Use, THC Plasma Levels, and Impairment

- Plasma levels rise rapidly after smoking
 - Peak in 5-8 min after smoking
 - Can be >100ng/mL at peak
 - Fall to <20ng/mL at 1 hour
 - Fall to <10ng/mL at 4 hours
Cannabis Use, THC Plasma Levels, and Impairment

- Clinical effects begin within minutes of peak blood levels
- Impairment may not be evident until 20 min. after peak
- Therefore, declining THC blood levels are associated with increasing drug effect
 - CNS levels increasing
- Impairment lasts at least 3-5 hrs
- But perceived “high” by users is substantially shorter
- Some evidence of “hangover effect” for 24hrs in impairment of necessary driving skills\(^1,2,3\)
- Residual neuropsychologic effects seen for 12-24 hrs\(^4\)

1. Leirer VO, Aviat. Space Environ 1991
3. Couper F, Drugs and human performance fact sheets 2004:1-100 NHTSA
4. Pope HG et al. /Drug and Alcohol Dependence 1995
Figure 1. Time course of active THC (9-delta-tetrahydrocannabinol) and THC acid (THC-COOH) concentrations in plasma after smoking marijuana with 15 mg in a 70 kg person. A, absorption; D, distribution; E, elimination; □, maximum; ♦, minimum; △, average; --×--, THC-COOH. (Reprinted with permission, Ward and Dye).
THC blood levels, impairment and time after smoking Cannabis

30’, ± impair.

Fig. 1. The level of THC in blood and performance on the SFSTs and the driving task.

Papafotiou K; FSI 2005
Heustis, et al 1992: equations for estimating time since last Cannabis use

Model I: \(\log t = -0.698 \log [\text{THC}] + 0.687 \)

\[
CI = \log t \pm \left(0.030 \left(1.006 + \frac{(\log[\text{THC}] - 0.996)^2}{89.937} \right) \right)^{0.5}
\]

Model II: \(\log t = (0.576 \log \frac{[\text{THCCOOH}]}{[\text{THC}]) - 0.176} \)

\(\log CI_2 = \log t \pm 1.975 \times \)

\[
\sqrt{0.045 \left(1.006 + \frac{(\log[\text{THCCOOH}]/[\text{THC}] - 0.283)^2}{123.420} \right)}
\]
Experimental Tests and Plasma THC levels

- Visual tracking is impaired when THC > 6 ng/mL
- Attention impaired > 9 ng/mL,
- Visual functioning impaired > 12 ng/mL.

Experimental Tests and Plasma THC levels

- Impaired critical tracking task when THC > 2 ng/mL (staying in the lane of traffic)
- Stop signal task impaired > 5 ng/mL (measure of inhibitory control)
- Tower of London task impaired > 5 ng/mL (measure of problem solving ability)
- All subjects impaired in all tasks > 30 ng/mL

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>THC impairment level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bramness 2010</td>
<td>DUID drivers</td>
<td>>1.6ng/mL: incr. risk of being judged impaired-CTI</td>
</tr>
<tr>
<td>Jones 2007</td>
<td>DUID drivers</td>
<td>1.0ng/mL - Median THC level</td>
</tr>
<tr>
<td>Grotenhermen 2007</td>
<td>Meta-analysis</td>
<td>7-10ng/mL equivalent to BAC of 0.05g%</td>
</tr>
<tr>
<td>Khiabani 2006</td>
<td>DUID Drivers</td>
<td>>3ng/mL : drivers more likely impaired</td>
</tr>
<tr>
<td>Ramaekers 2006</td>
<td>Lab skills testing after smoking</td>
<td>2-5ng/mL upper and lower limits of impairment</td>
</tr>
<tr>
<td>Menetrey 2005</td>
<td>Oral dronabinol lab study</td>
<td>THC lower levels than smoking</td>
</tr>
<tr>
<td>Papafotiou K 2005</td>
<td>Lab skills study p smoking</td>
<td>>3.18ng/mL (whole blood)</td>
</tr>
<tr>
<td>Laumon BMJ 2005</td>
<td>Culpable drivers</td>
<td>>1ng/mL: OR 2.87, with D-R; >5ng/mL= OR 4.87</td>
</tr>
<tr>
<td>Drummer 2004</td>
<td>DUID Drivers</td>
<td>>5ng/mL: 6.6X the risk, equivalent to BAC >0.10g%</td>
</tr>
<tr>
<td>Mura 2003</td>
<td>Injured drivers</td>
<td>>1ng/mL: OR 2.5, no D-R; OR 4.6 with EtOH</td>
</tr>
<tr>
<td>Swan 2000</td>
<td>15th Drug & Traffic Safety Conf</td>
<td>+THC 6.4 times more likely fatal crash risk</td>
</tr>
<tr>
<td>Crouch 1993</td>
<td>Truck driver fatalities</td>
<td>>1ng/mL</td>
</tr>
<tr>
<td>Terhune 1992</td>
<td>Driver fatalities</td>
<td>11-fold risk if any THC plus alcohol</td>
</tr>
<tr>
<td>Reeve 1983</td>
<td>Test subjects & RST</td>
<td>>3ng/mL-80% impaired, only 38% felt impaired</td>
</tr>
</tbody>
</table>
Countries with per se Limits on DUID and THC in blood/serum

- **Sweden**: 0.3 ng/ml level (serum) for prosecution- “zero tolerance” (LOQ)
- **France, Finland and Poland**: lab LOQ
- **Germany**: 1.0 ng/ml serum, 0.5 ng/ml WB
- **Belgium**: 2.0 ng/ml in plasma (1.0 ng/ml in whole blood)
- **Switzerland**: 1.5 ng/ml in blood
States in the USA with per se Limits on DUID and Marijuana

- Arizona, Delaware, Georgia, Indiana, Illinois, Iowa, Michigan, Minnesota, Nevada, North Carolina, Ohio, Pennsylvania, Rhode Island, South Dakota, Utah, Virginia, and Wisconsin

- Any amount of prohibited drug found in the blood or urine of drivers while operating a motor vehicle is a per se violation of those states’ DUI statutes
Postmortem redistribution of Δ^9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH)

Michael G. Hollanda,b,1,2,*, David M. Schwopec, Robert Stoppacherd,e, Shane B. Gillene, Marilyn A. Huestisc

- Prior to our 2011 publication, no data was available regarding PMR for THC
- Reasons are multi-factorial
 - ME’s offices have limited funds
 - Drugs studied and quantified when they may be a cause of death or overdose that contributes to death
 - THC not studied due to it is not a cause of death
 - Increasingly noted to be a significant cause of DUID
 - Impaired driving now being increasingly studied
- No prior information whether PM THC levels can be used for assigning impairment
Methods

- 19 consecutive adult autopsy cases from the OCMEO (Syracuse, NY) with + urine THCCOOH
- Matched heart and femoral postmortem bloods
- Free THC, THC-OH and THCA were analyzed by 2D GCMS
- 10 matched heart and femoral postmortem whole blood specimens from non-THCCOOH cases served as controls and to calibrate equipment
- In addition, antemortem specimens were available for testing in three cases.
Results

- THCCOOH was present in all 19 cases.
- 10 cases had quantifiable THC and 11-OH-THC.
- Mean ± SD heart : femoral blood ratios were:
 - 1.54 for THC (range: 0.3-3.1);
 - 1.63 for 11-OH-THC (range: 0.3-2.7);
 - 1.78 for THCCOOH (range: 0.5-3.0).
Results

- Median heart: femoral blood ratios
 - 1.52 for THC
 - 1.73 for 11-OH-THC
 - 1.79 for THCCOOH

- In three cases with antemortem blood also available, PM levels were lower than AM levels in all cases.
Conclusion: THC Exhibits Modest PMR

- First human study to demonstrate THC exhibits modest degree of PMR
- Much less PMR detected than that expected by Vd, lipid solubility, etc; consistent with degree of protein binding
- The antemortem data, if reproducible, indicate that postmortem blood might underestimate antemortem levels
Post-mortem blood tests for impairment

- Used routinely (with proper collection considerations) with many drugs:
 - Alcohol
 - Opioids
 - Cocaine
 - Amphetamines
 - Many others

- Must consider: site of sample, matrix, time, method; storage, tube type; method of death; state of decomposition; Drug characteristics (Vd, pKa, lipid solubility, protein binding, etc)

Conclusions

- Heustis model using THC and THC/THCCOOH ratios not validated for use with post-mortem specimens
- Antemortem serum levels >2-5ng/mL seem to establish impairment
- THC behaves much like other drugs in terms of PMR
- PM WB heart blood specimens average only 1.5X femoral levels
- WB: Plasma ratio is 0.5
- Therefore “built in safety factor” even if using postmortem blood