Interpretation of laboratory drug analyses for forensic and medicolegal purposes

Simon Thomas

National Poisons Information Service (Newcastle)

Newcastle upon Tyne Hospitals NHS Foundation Trust
Wolfson Unit of Clinical Pharmacology, Newcastle University,
Newcastle NE2 4HH, UK
Scope

• Understand the need to consider analytical data in the context of all other relevant evidence

• Explain reasons for the differences in drug concentrations observed for samples taken in life and after death

• Explain the value of drug-metabolite ratios in estimating the time since exposure

• List advantages and disadvantages in comparison with blood of other available samples including urine, vitreous humour, bile and homogenised tissue
Interpretation of samples

- Role of drugs / toxins in a death or in the behaviour of a suspect or victim
- Evaluation of criminal poisoning or adulteration
- Drug-facilitated sexual assault
- Non-accidental poisoning in children
- Driving under the influence
- Adherence to drug treatment
- Occupational exposure
General principles

• **Consider** analytical results in the context of all other evidence available, e.g. clinical features of the exposed individual.

• Consider validity of the data
 – **chain of custody**
 – **appropriate sample collection and labelling**
 – **use of an appropriate anticoagulant/preservative**
 – **accuracy and limits of detection of analyses.**

• **Sample type** (e.g. blood, plasma) and timing

• **Reporting units** (free acid base or salt?)
Case 1 – Toxicokinetics (back extrapolation)

- An adult male driver leaves the scene after a collision with a lamp post.
- The Police trace and arrest him 4 h later and a blood sample is taken 5 h after the collision.
- The results give a blood ethanol concentration of 48 mg/dL.
- Would the ethanol concentration at the time of the collision be over the legal limit of 80 mg/dL?
Back extrapolation – zero order substance

17 mg/dL/h
(vs 15 and 20 mg/dL/h)
Case 1 – Considerations

- Legal definition of intoxication based on blood or breath concentrations – no need to have other evidence
- Well defined population kinetics, including variability, with legal precedent
- Blood concentrations could be affected by
 - Incomplete or continuing absorption
 - Drinking between the accident and the arrest (the ‘hip flask’ defence)
Case 2 – back extrapolation

• A 22 year old female intravenous drug user attends the Emergency Department following an alleged methadone overdose.

• No features of methadone toxicity are found and she discharged after 8 h observation.

• Readmitted 21 h later with coma and hypotension and subsequently dies.

• A blood sample from the second admission contains methadone 0.45 mg/L.

• Is it possible that she had methadone toxicity at the time of the earlier discharge?
Back extrapolation – first order, long T1/2

- $T_{1/2} = 13 \text{ h}$
- $T_{1/2} = 20 \text{ h}$
- $T_{1/2} = 30 \text{ h}$

Approximate methadone therapeutic range

Time (24 h clock)

discharge from hospital

Blood sample
Case 2 – back extrapolation

• More difficult to draw reliable conclusions as
 – First order drug
 – Variable elimination
 – Less info on kinetics after overdose
 – Less info on concentration-effect
 – Tolerance
 – Further drug use after discharge
• Consider other evidence that might be available, e.g.
 – Recorded features of poisoning
 – QT interval prolongation
• Worth locating blood samples taken in life where possible
Case 3 – back extrapolation

• A 17 year old male is seen in the ED after a paracetamol (acetaminophen) overdose.

• The doctor misunderstands guidance and does not send a blood sample for paracetamol concentration, instead discharging the patient on the basis of the reported dose ingested.

• The patient develops nausea and vomiting and re-attends the following day.

• Paracetamol concentration then is 12 mg/L. There are liver function abnormalities.

• It is alleged that the paracetamol concentration would have warranted treatment if a sample had been taken on the first attendance.

• Is this correct?
Back extrapolation – first order, short T1/2

- T_1/2 = 4 h
- T_1/2 = 3 h
- T_1/2 = 5 h

[Paracetamol] (mg/L) vs Time (h)

Blood sample

Overdose Initial medical assessment
Case 3 – back extrapolation

Unreliability of estimates as

- First order drug
- Variable elimination
- Short half life
- Measured blood concentration close to limit of detection
- Effect of paracetamol poisoning on estimates of half life
Back extrapolation – first order, long T1/2

T 1/2 = 4 h

[Paracetamol] (mg/L)

0 4 8 12 16 20 24
Time (h)

Overdose Initial medical assessment

Blood sample

100 150 200
Case 4 – ? Fatal poisoning

- 25 year old male psychiatric in-patient (Schizophrenia), weight 81 kg
- Regular high dose olanzapine therapy
- Frequent sedation with lorazepam and haloperidol
- Suffers cardiac arrest following use of sedation
- Post mortem – no specific cause of death identified (possibly suffocated by a pillow)
- Post mortem femoral blood concentrations of administered drugs available
- **Did the drugs cause the death?**
Case 4 – ? Fatal poisoning

<table>
<thead>
<tr>
<th></th>
<th>Olanzapine</th>
<th>Haloperidol</th>
<th>Lorazepam</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h dose</td>
<td>30 mg</td>
<td>10 mg</td>
<td>6 mg</td>
</tr>
<tr>
<td>(max licensed dose = 20 mg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM concentration (femoral)</td>
<td>0.5 mg/L</td>
<td>14 mcg/L</td>
<td>16 mcg/L</td>
</tr>
<tr>
<td>Approximate therapeutic concentrations</td>
<td>0.002-0.48 mg/L</td>
<td>5.6-16.9 mcg/L</td>
<td>50-240 mcg/L</td>
</tr>
<tr>
<td>Concentrations associated with toxicity</td>
<td>> 0.080 mg/L</td>
<td>>50 mcg/L</td>
<td>300-600 mcg/L</td>
</tr>
<tr>
<td>Concentrations associated with fatality</td>
<td>1.24 mg/L (1 case)</td>
<td>1900 mcg/L</td>
<td>60 mcg/L (2 cases)</td>
</tr>
</tbody>
</table>
Case 4 – considerations

- Concentration (blood) to effect (brain) relationship
- Inter-individual variability
- Tolerance
- Effects of multiple toxins
- Post mortem effects
Post mortem blood

- Central sites
 - Heart
 - SVC
 - (Subclavian)
- Peripheral sites
 - Femoral
 - Iliac
- Other sites
 - Cavity blood
 - Haematoma blood

Dinis-Oliveira et al, Toxicological Mechanisms and Methods 2010; 20: 363-414
Post mortem blood sampling - considerations

- Time between
 - poisoning and death
 - death and sampling (consider storage conditions and position of body)
- Mode of death (e.g. burning, drowning)
- Haemolysis (e.g. iron, chloroquine)
- Redistibution (q.v.)
- Drug stability (e.g. cocaine, LSD) and volatility (e.g. ethanol, CN, toluene)
- Spontaneous production (e.g. ethanol, GHB)
- Contamination (e.g. lidocaine, lithium)
- Decomposition /putrefaction (e.g. alcohols, acetaldehyde, phenethylamine)
- Embalming (e.g. methanol)
Post mortem redistribution

- Tissue to blood redistribution
 - Liver
 - Heart
- Absorption from
 - GI tract
 - Bladder
 - Respiratory tract
- Lipid soluble, large Vd, basic drugs especially

Figure 1 Median blood clozapine and norclozapine concentrations before (♦) and after (○) death in patients dying from causes other than clozapine self-poisoning (*P < 0.0001, Wilcox ranked pairs test).

Flanagan RJ. ADRB 2008; No 250
Other specimens

Urine

• Simple to obtain

• Reflects substances in blood in the hours prior to death

• High concs, useful for screening

• Concentrations less well correlated with clinical effects

Dinis-Oliveira et al, Toxicological Mechanisms and Methods 2010; 20: 363-414
Other specimens

Stomach contents

• Generally qualitative analysis - useful for directing further studies

• Visual examination may reveal tablets

• Stomach contents are not homogeneous

• Post mortem distribution from blood to stomach

Dinis-Oliveira et al, Toxicological Mechanisms and Methods 2010; 20: 363-414
Other specimens

Bile

• Helpful for drugs concentrated in liver and excreted in bile

Dinis-Oliveira et al, Toxicological Mechanisms and Methods 2010; 20: 363-414
Other specimens

Liver

- Concentrates many drugs/metabolites
- Non uniform distribution
- Right peripheral liver least susceptible to redistribution effects
Other specimens

Hair

- Historical record of drug/chemical exposure
- Plenary lecture
Other specimens

Vitreous humour

- Protected from
 - metabolism (e.g. ethanol)
 - Putrefaction
 - Charring
 - Trauma
 - micro-organisms
- Diabetes/insulin related deaths
- Data available for ethanol but limited for others

Dinis-Oliveira et al, Toxicological Mechanisms and Methods 2010; 20: 363-414
Other specimens

Marrow

- When soft tissue has degenerated
- Concentrations correlate with those in blood
- More research needed to evaluate role

Dinis-Oliveira et al, Toxicological Mechanisms and Methods 2010; 20: 363-414
Case 5 – Acute or chronic poisoning?

• A 67 year old Asian female with chronic severe depression has been treated with amitriptyline for more than 2 years

• She is found dead in her own home. There is no suicide note

• PM does not reveal a macroscopic cause of death

• Toxicology results follow

• Did amitriptyline overdose cause the death?
Case 5 – Acute or chronic poisoning?

Koski, 2005
Case 5 – Acute or chronic poisoning?

<table>
<thead>
<tr>
<th>Femoral blood</th>
<th>Amitriptyline</th>
<th>Nortryptyline</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h dose</td>
<td>150 mg</td>
<td>-</td>
</tr>
<tr>
<td>PM concentration (femoral)</td>
<td>3.8 mg/L</td>
<td>0.02 mcg/L</td>
</tr>
<tr>
<td>Approximate therapeutic</td>
<td>0.05-0.1 mg/L</td>
<td>0.05-0.1 mg/L</td>
</tr>
<tr>
<td>concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrations associated with</td>
<td>> 0.3 mg/L</td>
<td>-</td>
</tr>
<tr>
<td>toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrations associated with</td>
<td>0.55 – 16.1 mg/L</td>
<td>0.29 – 6.5 mg/L</td>
</tr>
<tr>
<td>fatality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case 5 – Acute or chronic poisoning?

• Low concentration of nortriptyline implies acute recent exposure…

• …unless CYP2C19 slow metaboliser
 – 3-5% Caucasians
 – 15-20% Asians
Final thoughts

• Stay independent
• Stick to what you know (don’t be drawn to comment outside your expertise)
• Don’t have words put in your mouth. Beware the ‘just answer yes or no’ question).
• Don’t overstate what can be concluded from the evidence available
• Don’t expect your fee to be paid as quickly as your report was demanded