Drug induced hemolysis: transfusion management

Interactive case study

Kurt Anseeuw, MD
Department of Emergency Medicine
ZNA Stuivenberg
Antwerp, Belgium
Case 1

- Male patient, 50 y

- History
 - Nil

- Chief Complaint
 - General malaise
 - Fatigue
 - Loss of appetite
 - Vertigo
 - Headache
Case 1 – Lab work

<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (Hemoglobin)</td>
<td>10,2 g/dl</td>
<td>12,9 – 16,4</td>
</tr>
<tr>
<td>MCV (Mean corpuscular volume)</td>
<td>112,7</td>
<td>82,4 – 97,3</td>
</tr>
<tr>
<td>Reticulocyte (Immature red blood cell)</td>
<td>14 / 1000 RBC</td>
<td>4,4 – 15,5</td>
</tr>
<tr>
<td>LDH (Lactate dehydrogenase)</td>
<td>357 U/L</td>
<td>313 – 618</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>0,5 mg/dl</td>
<td>0,2 – 1,3</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>1,72 g/l</td>
<td>0,26 – 1,85</td>
</tr>
</tbody>
</table>
Is this drug induced hemolytic anemia?

- Yes
- No
- I don’t know
Hemolytic anemia

Red Blood Cells

- **One RBC contains 1 billion molecules of oxygen**
- **2 to 3 million RBCs are made each second**
- **RBCs circulate for 120 days**
- **There are millions of RBCs in one drop of blood**
- **RBCs take 20 seconds to circulate the body one time**

Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb</td>
<td>= or ↓</td>
</tr>
<tr>
<td>MCV</td>
<td>↑</td>
</tr>
<tr>
<td>Reticulocyte</td>
<td>↑</td>
</tr>
<tr>
<td>LDH</td>
<td>↑</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>↑</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>↓</td>
</tr>
</tbody>
</table>

Goodnough LT. Am J Hematol 2015
Case 2

Second Chance
Just Ahead
Case 2

- Male patient, 50 y

History
- Nil

Chief Complaint
- General malaise
- Fatigue
- Loss of appetite
- Vertigo
- Headache

Examination
- Hemodynamic stable
- Slight icterus
Case 2 – Lab work

<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (Hemoglobin)</td>
<td>7.7 g/dl</td>
<td>12.9 – 16.4</td>
</tr>
<tr>
<td>MCV (Mean corpuscular volume)</td>
<td>101.7</td>
<td>82.4 – 97.3</td>
</tr>
<tr>
<td>Reticulocyte (Immature red blood cell)</td>
<td>78 / 1000 RBC</td>
<td>4.4 – 15.5</td>
</tr>
<tr>
<td>LDH (Lactate dehydrogenase)</td>
<td>2857 U/L</td>
<td>313 – 618</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>4.0 mg/dl</td>
<td>0.2 – 1.3</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>< 0.05 g/l</td>
<td>0.26 – 1.85</td>
</tr>
</tbody>
</table>
Is this drug induced hemolytic anemia?

- Yes
- No
- I don’t know
Is this drug induced hemolytic anemia?

- Hemolytic anemia?

- **Drug** induced hemolytic anemia?
 - Pharmaceutical drug or medicine, is a chemical substance used to treat, cure, prevent, diagnose a disease or promote well-being.

- History

- Case 2 patient: “painkiller”
 - Acetaminophen
 - Ibuprofen

Garratty G. Blood reviews, 2010
Can hemolytic anemia only be induced by drugs?

- Yes
- No
- I don’t know
Hemolytic anemia

- Non – xenobiotic related

- Xenobiotic related
 - Direct red cell destruction
 - Venoms (snake, spider)
 - Hypotonic solutions
 - Microangiopathic (eg clopidogrel, cyclosporine, tacrolimus)
 - Oxidative damage
 - Autoimmune hemolytic anemia

Garratty G. Blood reviews, 2010
Carnovale C. Int J Clin Pharm, 2015
Drug induced hemolysis

Immune mediated versus oxidative (metabolic)
Immune mediated hemolytic anemia

- Trigger antigen antibody reaction
- Varying degree hemolysis
Immune mediated hemolytic anemia

- Association 150 drugs

- Drug dependent
 - Hapten
 - Drug-antibody immune complex

- Drug independent (auto-antibodies)

Fig. 1. Proposed unifying hypothesis of drug-induced antibody reactions. The thicker, darker lines represent antigen-binding sites on the Fab region of the drug-induced antibody. (A) Drugs (haptens) bind loosely (or firmly) to cell membranes, and antibodies can be made to the drug (producing in vitro reactions typical of a drug adsorption [penicillin-type] reaction); (B) membrane components, or mainly membrane components (producing in vitro reactions typical of autoantibody); (C) or part-drug, part-membrane components (producing an in vitro reaction typical of the so-called immune complex mechanism).
Oxidative hemolytic anemia

- Enzymatic defects
 - Glucose 6-phosphatedehydrogenase deficiency

Luzzatto L. B J Hematology, 2014
Oxidative hemolytic anemia

- X-linked genetic
- > 140 mutations in G6PD gene
- Genetic heterogeneity

Different levels enzymatic activity

<table>
<thead>
<tr>
<th>Class</th>
<th>Level of deficiency</th>
<th>Enzyme activity</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Severe</td>
<td>Chronic nonspherocytic hemolytic anemia in the presence of normal erythrocyte function</td>
<td>Uncommon; occurs across populations</td>
</tr>
<tr>
<td>II</td>
<td>Severe</td>
<td>Less than 10 percent of normal</td>
<td>Varies; more common in Asian and Mediterranean populations</td>
</tr>
<tr>
<td>III</td>
<td>Moderate</td>
<td>10 to 60 percent of normal</td>
<td>10 percent of black males in the United States</td>
</tr>
<tr>
<td>IV</td>
<td>Mild to none</td>
<td>60 to 150 percent of normal</td>
<td>Rare</td>
</tr>
<tr>
<td>V</td>
<td>None</td>
<td>Greater than 150 percent of normal</td>
<td>Rare</td>
</tr>
</tbody>
</table>

G6PD = glucose-6-phosphate dehydrogenase.
Information from references 1 and 7.

Frank JE. Am Fam Physician, 2005
Oxidative hemolytic anemia

- Acute hemolysis
 - Infection
 - Fava beans
 - Oxidative drug

- Degree hemolysis depends on
 - Drug dose
 - G6PD activity
 - Red cell ageing

<table>
<thead>
<tr>
<th></th>
<th>Definite association</th>
<th>Possible association</th>
<th>Doubtful association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimalarials</td>
<td>Primaquine</td>
<td>Chloroquine</td>
<td>Mepacrine Quinine</td>
</tr>
<tr>
<td></td>
<td>Pamaquine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfanilamide</td>
<td>Sulfadimidine</td>
<td>Aldesulfone</td>
</tr>
<tr>
<td></td>
<td>Sulfacetamide</td>
<td>Sulfasalazine</td>
<td>Sulfadiazine</td>
</tr>
<tr>
<td></td>
<td>Sulfapyridine</td>
<td>Gibenclamide</td>
<td>Sulfafuroazole</td>
</tr>
<tr>
<td></td>
<td>Sulfinpyrazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfones</td>
<td>Dapsone</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>Nitrofurantoin</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>Antipyretic or analgesic</td>
<td>Acetamiide</td>
<td>Aspirin</td>
<td>Paracetamol Phenacetin</td>
</tr>
<tr>
<td>Other drugs</td>
<td>Nalidixic acid</td>
<td>Ciprofloxacin</td>
<td>Aminosalicylic acid</td>
</tr>
<tr>
<td></td>
<td>Nifuradil</td>
<td>Chloramphenicol</td>
<td>Dextrorubicin</td>
</tr>
<tr>
<td></td>
<td>Methylothionium</td>
<td>Vitamin K analogues</td>
<td>Probenecid</td>
</tr>
<tr>
<td></td>
<td>Phenazopyridine</td>
<td>Ascorbic acid</td>
<td>Dimercaprol</td>
</tr>
<tr>
<td></td>
<td>Co-trimoxazole</td>
<td>Mesalazine</td>
<td></td>
</tr>
<tr>
<td>Other chemicals</td>
<td>Naphthalene</td>
<td>Acalypha indica extract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,6-trinitrotoluene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reprinted from ref 1 with permission.

Table 2: Drugs and chemicals associated with substantial haemolysis in patients with G6PD deficiency

Cappellini MD. Lancet, 2008
Diagnosis

Your test results are in, and you're full of surprises!
Is there an unique discriminative test between immune mediated or oxidative hemolytic anemia?

- Yes
- No
Direct antiglobulin test (DAT)

- Direct Coombs test
- Critical step evaluation hemolysis
- Determination IgG and/or complement bound on RBC

Positive: immune-dependent
Negative: immune-independent

Zantek ND. Am J Hematol, 2012
Diagnosis drug induced hemolytic anemia

- Careful history drug exposure
- DAT

- Immune-dependent
 - Antibodies
 - Reference labs
 - Drug or metabolites

- Immune-independent
 - G6PD activity (generation NADPH)
 - Fluorescent spot test
 - Quantitative spectrophotometric assay
Management
Treatment for immune mediated hemolytic anemia includes minimum

- Cessation of offending drug
- Red blood cell transfusion
- Steroids
- All of the above
Treatment for oxidative hemolytic anemia includes minimum

- Cessation of offending drug
- Red blood cell transfusion
- Vitamine E (anti-oxidant)
- All of the above
Treatment drug induced HA

- Discontinuation of offending drug
 - Dose-dependent effect (enzymatic)
 - Drug-dependent antibodies (immune)

- Immune-mediated
 - Steroids: no effect

- Oxidative
 - Vitamin E and selenium (antioxidants): no benefit

- Transfusion RBC (severe anemia)
Transfusion trigger
Tranfusion trigger in drug induced hemolytic anemia is

- Hb ≤ 10 g/dl
- Hb ≤ 8 g/dl
- Hb ≤ 7 g/dl
- Clinical decision
Hb value ... OR ... patient

- Physiological status
 - \(DO_2 = CO \times CaO_2 \)
 - \(DO_2 = (SV \times HR) \times [(1.34 \times Hb \times SaO_2) + (0.0031 \times PaO_2)] \)

- Goal
 - Avoid organ ischemia
 - Avoid organ dysfunction

- Restrictive transfusion better than liberal
 - Same mortality
 - Less transfusion-related complications

Goodnough LT. Am J Hematol 2015
Spahn DR. Transfus Med Hemother 2015
Transfusion trigger

<table>
<thead>
<tr>
<th>Clinical situation</th>
<th>Transfusion trigger</th>
<th>Evidence quality</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU patients</td>
<td>Hb ≤ 7 g/dl</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Postoperative</td>
<td>Hb ≤ 8 g/dl or symptomatic</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>Hb ≤ 8 g/dl or symptomatic</td>
<td>Moderate</td>
<td>Weak</td>
</tr>
<tr>
<td>Acuut coronary syndrome</td>
<td>None</td>
<td>Very low</td>
<td>Uncertain</td>
</tr>
</tbody>
</table>

Guidelines AABB - 2012
Transfusion for drug induced anemia

- Clinical decision
 - Physiological status (CO, Hb, SaO₂)
 - Clinical circumstances
 - Pre-existing anemia
 - Massive hemolysis
 - Ongoing hemolysis

- Guidance

<table>
<thead>
<tr>
<th>Hb</th>
<th>Signs brisk hemolysis</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 7 g/dl</td>
<td></td>
<td>Blood transfusion</td>
</tr>
<tr>
<td>< 9 g/dl</td>
<td>Yes</td>
<td>Blood transfusion</td>
</tr>
<tr>
<td>7 – 9 g/dl</td>
<td>No</td>
<td>Observe for 48 h</td>
</tr>
</tbody>
</table>
Case 2 - continued

- DAT negative

- G6PD deficiency
 - No infection
 - No fava bean
 - Must be drug induced ...
 ... unable to identify drug

- No transfusion
Take home messages

- Work-up anemia

 DIAGNOSIS OF ANEMIA

- MCV* <80
 - Ferritin
 - Iron Deficiency Anemia
 - Sickle Cell Thalassemia etc.
 - Hb Electrophoresis +
 - Sideroblastic Anemia
 - Lead poisoning
 - Coombs -
 - Hb Electrophoresis +
 - Sickle Cell Thalassemia etc.

- MCV 80-100
 - Ferritin
 - Chronic Disease

- MCV >100
 - B12↓
 - Folic acid RBC folate↓
 - Folic acid Deficiency Liver disease
 - Megaloblastic Anemia
 - Aplasia, Myelofibrosis
 - Coombs +
 - Hb Electrophoresis -
 - Autoimmune Hemolytic Disease
 - Hb Electrophoresis +
 - Spherocytosis
 - Ovalocytosis
 - G6PD**

*MCV = Mean Corpuscular Volume of Erythrocytes
**G6PD = Glucose-6-phosphate dehydrogenase Deficiency
Take home messages

- Careful drug history
- Treatment = cessation of exposure
- Transfusion clinical decision
Thank you for your attention